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Abstract-Unsteady heat transfer in a macroscopically isotropic and homogeneous particulate mixture is 
considered with the help of a general approach based on averaging the local heat conduction equations 
valid in mixture phases over a configurational ensemble of particles and on ideas of the self-consistent field 
theory. A closed set of equations for the mean temperatures of the phases is derived by neglecting the 
direct heat transport through contacts with contiguous particles. Both mean heat flux and interphase 
exchange are shown to be essentially frequency dependent so that the effective heat conductivity deviates 
considerably from its stationary value. This is representative of the relaxation processes influencing unsteady 
heat transfer and generates corresponding dispersion effects. Under the weak non-stationary condition the 
set can be reduced to either a single ‘equivalent’ equation belonging to the elliptic type or a system of two 
simplified equations whose reliability has been discussed in detail previously on the example of heating a 

motionless granular bed through a flat boundary. 

1. INTRODUCTION 

THE METHODS available for describing an average 
unsteady transfer process in heterogeneous media rely 

on either the usual single-phase parabolic heat con- 
duction equation involving some effective heat con- 
ductivity or a phenomenological system of separate 

transport equations for each phase of a medium with 
time-independent interphase heat exchange 
coefficients. That the former approach is entirely 
inconsistent under non-stationary conditions has been 

experimentally demonstrated in a convincing way as 
early as in 1959 [l, 21. The latter approach amounts 
to extending a quasi-stationary scheme to a region of 
heat transfer time scales for which the system as well 
as its solutions do not obviously hold. A thorough 
review of recent advances of a two-phase model in 

problems of practical importance is to be found in 
refs. [3-51. Following ref. [3] the phenomenological 
system is to be written in the form 

c,&(a/at+v,v)T, = -vq-0, 

c,p(a/at+v,V)t, = 0, 

q= -1*v7,, CT = k(7,-T,), k = (I*/4a2)A2, 

(1) 

where A* is the effective heat conductivity, q and 0 play 
the roles of mean heat flux and mean heat exchange 
between the phases per unit volume of a granular 
medium, respectively. The parameter A is understood 
to represent a constant independent of physical prop- 
erties, with A = 2 according to ref. [3]. It is important 
that transient heat flux through the assemblage of 
contacting particles is neglected so that the second 
equation in set (1) contains no conduction term. 

The quantities 1* and k are thought of as constants 

to be determined from experimental data relating to 
steady or quasi-steady processes. It is just such an 
assumption which makes set (1) inadequate for the 

transfer physics because of the full neglect of relax- 
ation of both an instantaneous value of the mean 
heat flux to a given mean temperature gradient and a 

current mean temperature of the dispersed phase to 
that of the continuous matrix. The physical sig- 
nificance of the latter relaxation processes has been 

explained in refs. [6, 71 whereas implications con- 
nected with the former have been pointed out in ref. 
[S]. These processes result in the discrepancies 
between the conclusions following from set (1) and 
experiments. Nevertheless, using set (1) for particular 

unsteady problems sometimes leads to satisfactory 
consequences and, anyhow, there is no other alter- 

native but to employ set (1) for lack of a more sound 
foundation of the non-stationary heat transfer theory 
for granular media. 

Thus, a two-fold task of principal nature arises. It 

seems to be necessary, firstly, to provide for deter- 
mining a reasonable basis for theoretical description 
of the relaxation processes and the resulting dis- 
persion effects accompanying unsteady heat transport 
in granular and other heterogeneous systems. 
Secondly, it is desirable to find conditions and to 

elucidate reasons of approximate validity of set (1) in 

many essentially unsteady situations. 
The study of both these problems constitutes the 

main purpose of this paper. The first problem is suc- 
cessfully resolved with the help of the technique of 
averaging over the ensemble of permissible con- 
figurations of dispersed particles together with the 
methods of the theory of self-consistent fields put 
forward in refs. [9, lo]. This results in a new closed 
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NOMENCLATURE 

A parameter in equations (I) and (32) /I = t,:‘T 

u radius of particles P dispersed phase concentration by volume 

; 
heat capacity per unit volume 0 interphase heat exchange 

mean temperature gradient T temperature 

F, G quantities defined in equation (15) x dimensionless thickness of a layer lilled 

h interphase heat exchange with pure matrix material 

k interphase heat exchange coefficient w Fourier transform parameter. 

M,, N, parameters defined in equation (19) 

q mean heat flux 
r, R dimensional and dimensionless 

Subscripts 

coordinate vectors 
0 ambient medium (matrix) 
1 

s parameter introduced in equation (8) 
dispersed phase 

T relaxation time scale 
S stationary values. 

V mean velocity. 
Superscripts 

Greek symbols * perturbations of mean temperature 

; 

= 3.,/i,” caused by the test sphere 

= ?“/I.,, connected with the test sphere 

(-: =1-p field inside the test sphere 

li thermal conductivity 0 values of mean temperature and its 

/? heat conductivity gradient at the test sphere centre. 

system of averaged heat transfer equations attributed 

to two co-existing continua which model continuous 
and dispersed phases. The second problem is settled 

by means of reducing these equations to the form 
specific for those in set (1) and comparing the 
coefficients involved. 

A mixture consisting of identical spherical particles 
immersed into an ambient continuous medium is pri- 
marily considered as a representative example of 
granular systems in a broad sense. The main con- 

clusions are shown, however, to remain true for dis- 

perse and heterogeneous media of more complicated 
structure and for mass transfer processes. 

2. BASIC EQUATIONS 

The averaged equations for the mean temperatures 

of the continuous and dispersed phases of a macro- 
scopically homogeneous and isotropic medium con- 
taining identical spherical particles are to be derived 

with the help of the ensemble averaging procedure 

developed in ref. [9]. They happen to be of the same 
form as the equations in set (1) providing q and 0 are 
defined in the following manner : 

q = -i,Vz-(A, -i,)& 
s 

V,Q(t, rlr’) dr’ 
/T-T’, d (I 

3P 

ff = G ,r-,‘, g<, s 
V,ij(t,rjr’) dr’, T = ~t~+p~,. 

(2) 

Here the number concentration of particles appearing 
in the corresponding formulae in ref. [9] is expressed 

through the concentration of the dispersed phase by 

volume, and the functions .r^(t, rjr’) and i(t, rlr’) rep- 
resent the mean temperature and heat flux within a 
single test sphere. The introduction of these quantities 

implies averaging over the ensemble of possible 
arrangements of all the neighbouring particles com- 
patible with the presence of the centre of the test 
sphere at the point r’. 

For reasons given below, it is convenient to intro- 

duce new dimensionless coordinates and time by using 
scales a and a’/K, 

R = am ‘r, Fo = (a’/rc,)- ‘t, (3) 

and, after that, to apply the Fourier transform with 
respect to the dimensionless time Fo. Then, from equa- 
tions (1) and (2) the following equations, governing 
non-stationary heat transfer in the granular medium 
under study, are received in terms of the Fourier trans- 
formations of the unknown variables : 

where 

q(R) = +VT-(A,-IO)& 
s 

V,Q(t, RIR’) dR’ 
xi I 

h(R) = - $$ 
s 

A,z^(& RIR’) dR’, X = R-R’ 
XL I 

(5) 
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(for simplicity, the same notation is retained for Four- 
ier transfo~ations as for corresponding original 
quantities). 

The closure of the averaged field equations in set 
(1) is ensured, as is clearly seen from set (2), by 
expressing the conditioned mean quantities involved 
in the integrals in set (2) in terms of the unconditioned 
unknown variables r0 and z,. A mathematical prob- 
lem whose solution enables one to do so has been 
discussed in detail in ref. [IO]. If the Peclet number 
for one particle is small compared with unity, then it 
is allowable. when employing a coordinate system 
with an origin at the test particle centre, to neglect 
terms due to convective transport. Then the problem 
has to be stated as that of heat conduction both inside 
and outside the test sphere under the condition of con- 
tinuity of the temperature and heat flux at its surface. 
When the conditional ensemble averaging is perfor- 
med, the test sphere is formally to be regarded as 
immersed in some fictitious continuum, the properties 
of which coincide with those of the granular medium 
far away from the test sphere but depend on the dis- 
tance from its surface in its vicinity. The character of 
this dependence is dictated by the manner in which 
the particles are packed in the medium, that is, by 
the form of the binary correlation function which 
determines the relative positions of particles forming 
a pair. 

The solution of such a problem under steady con- 
ditions has been undertaken for randomly packed 
disperse systems in ref. [lo] and a good agreement 
with the available experimental data on the effective 
stationary conductivity has been reported. Con- 
sideration of rather a complicated dependence of the 
properties of the fictitious medium on coordinates 
requires a cumbersome numerical calculation to be 
carried out while solving the test particle problem. 
What is worse, the calculation may be expected to be 
valid rigorously only when applied to granular media 
of certain particular structure which is described by 
the binary correlation function having been used. 
In order to simplify the matter and to make the 
calculation applicable to a broader range of disperse 
and heterogeneous systems, it is reasonable to have 
recourse to a suitable semi-empirical model. Such a 
model may consist of an assumption that the test 
sphere is surrounded by a homogeneous fictitious 
medium separated from the sphere surface by a con- 
centric spherical layer filled with pure material of con- 
tinuous phase. The thickness ~a of this layer is 
unknown beforehand and the coefficient x plays the 
role of an empirical parameter to be found afterwards 
by comparing theoretical results with experimental 
evidence. In what follows thismodel is suggested with- 
out further comments. 

Thus, the ordinary heat conduction equations are 
valid inside the test sphere and within the concentric 
layer. Their Fourier transformations are to be written 
in the form, the independent variables from equations 
(3) being used, 

id = At, ico(~ JK,,)~ = AT’ (6) 

where z” and r‘ are understood to be mean tem- 
peratures for X < 1 and for 1 -z X -=z I +x, respec- 
tively. 

The properties of the fictitious medium when 
X > 1 +x are uniform and coincide with those of the 
granular medium as a whole. It means that heat trans- 
port in the region indicated is governed by the equa- 
tions in set (1). In order to make them closed, one 
needs to relate q and G to the unknown variables. 
Under steady conditions e and q are proportional to 
r = r0 = r , and Vr = Vr,, = Vr ?I respectively, scalar 
coefficients of proportionality to be calculated with 
the help of self-consistency equations, that is, by 
means of comparing the above linear representations 
for q and e with those resulting from definitions in 
equations (2). In a general case of non-stationary heat 
transfer the situation is more difficult since q and G 
must be linear functions not only of the mean tem- 
perature and its gradient but also of their time deriva- 
tives [IO]. This difficulty can be avoided, however, by 
using the Fourier transform when linear relations of 
the former type are preserved, the coefficients of pro- 
portionality being now thought of as dependent on iw 
too. For the quantities in set (4) it will be thus assumed 
that 

(7) 

By substituting equation (7) into equations (4) and 
neglecting a convective contribution to the heat flux in 
the coordinate system connected with the test particle, 
one gets Fourier transformations of averaged equa- 
tions governing unsteady heat transfer in the fictitious 
medium 

s=r = AZ, &rO = (l-&r, r, = ~7 

sd$+p(~-~)p]l;;i. (8) 

Equations of the same type govern non-stationary 
heat transfer in the originai granular medium as well. 
It follows from them that Is’/ - I-‘, 1 = L/a, L being 
the linear scale of the mean temperature fields. Evi- 
dently, a continual description of heat transfer is 
adequate only if that scale is much larger than the 
scale a of the inner structure of the granular medium, 
that is, if Is’] << I. On the contrary, the linear scale of 
perturbations induced by the test particle in the fields 
of mean temperature equals a so that the term on the 
ant-hand side of the first equation in set (8) must be 
one or a few orders of magnitude larger than the term 
on the left-hand side. Thus, one is free, in the first 
approximation, to drop-out the latter term altogether 
and, consequently, to omit the left-hand side term in 
the second equation in set (6) as well. This has been 
done previously in ref. [ 11) and amounts to using 
quasi-stationary forms of the transport equations 
everywhere outside the test particle. 
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The inequality ]?I << 1 imposes a restriction from 3. SOLUTION OF THE TEST PARTICLE 
above on the values of the characteristic frequency tc) PROBLEM AND EQUATIONS OF SELF- 
of a non-stationary heat transfer process which might CONSISTENCY 
he investigated on the basis of continual equations. 
Retaining the term iwQ in the heat conduction equa- 

Solutions of the problem expressed by equations 

bon inside the test sphere (the first one in set (6)) 
(I 1) can be sought in the form ofexpansions in spheri- 

means, at the same time, that the inequality 
cal functions, By confining the discussion to the lcvcl 
of accuracy specific to the approximate representation 

has to be true in order that non-stationary dispersion 

effects could be significant within the scope of a con- 
tinual manner of the description of unsteady heat 

transport. For example, it is usually satisfied with 
good accuracy for granular beds infiltrated with a gas. 

When inequality (9) is not fulfilled, the unsteady terms 
of all the heat conduction equations must be taken 

into account. In this case the role played by relaxation 
effects outside the test particle is comparable with 

or even is greater than that of relaxation inside this 
particle. 

In compliance with a general method discussed in 
refs. [IO. Ill, one has to introduce perturbations 7* 

and T’* of the mean temperature field conditioned by 
the presence of the test sphere as compared with the 
unconditional one. This gives 

r(R]R’) = z(R) + t*(X]R’), 

q(R]R’) = -iv+;-VT*. ‘Y> 1+x 

T’(R]R’) = T(R)+T’*(XIR’), 

q’(R]R’) = -AvT-&VT'*, 1 < X < I +x. 

(10) 

Then the test particle problem is to be formulated in 

the form 

of equations (12). only two terms of any such cxpan- 
sion have to be accounted for. After a simple cal- 
culation this yields. in particular 

7. = [7’)C,,I,,z(l’)P,,+E”C’,I,,z(~.)P,]~, ’ ?, 

J = X(h) “l (13) 

IN,‘z(y) being the Bessel functions of an imaginary 
argument and P, and P, denoting the Legendre poly- 

nomials, P, = 1 and P, = E”X/E”X. The coefficients 
C, are equal to 

Co = (77/2)“‘sh ‘(i(JJ)’ ’ 

x{l+iwa(l+fl~)[3~(1+x)]~ ‘F) ‘(iw)” 

C, = 3(~7/2)“~ shy ‘(ioJ)“‘[2([?+l)(G- 1) 

+~(56+4)]{2[G(2fi+ I)- 1 +b]F 

+a(3-2F)[G(2[1+1)+2-2j]} ’ (14) 

where a function and parameters are brought forward 

F= 3(iw)- ‘[(itu)“‘cth (ieJ)“‘- I]. 

s( = &/I”, G = (1 +x)~. 

Now the integration in set (5) can be carried out. 
The result is 

s V,i(R]R’) dR’ 
xc I 

%=A?, O<X< 1; 

Ar’*=O, 1 <.I’< 1+x; AT*=O, X> 1+x 
+[2(B2+1)(G-1) 

? = 7+7’*, I.,nVZ+i,nVz’*, X= I 
+/3(5G+4)](2[6(2/j+ I)- 1 +p] 

7’* = 7* , i,nV7’* = /Ink*, X = 1 +x 

+~(3/F-2)[G(2fl+l)+2-2fl])~’ 
7*+0, x+co,; B<co, x=0 (11) 

n denoting the unit external normal vector on the test 
sphere surface. The mean temperature t(R) can be s 

A,Z(RIR’) dR’ 
ii< I 

expressed in the vicinity of the point R’ as a Taylor 

[ 

iwa( 1 +/lx) F 

1 

’ expansion, that is, as a series in degrees of X,. A = :nz”iwF 1+ 38(,+x) (15) 
sufficient accuracy can be shown to be provided for 
in the case under study if only two terms of such a 
series are retained. Hence 

By substituting equations (15) into the definitions 
of q and h in set (5) one obtains formulae which must 

z(R) = t’+E’X, To = z(R’), E” = Vr(R’) be compared with those in set (7). This yields the 
following algebraic equations reflecting the self-con- 

(12) sistency requirement 

both TO and E” being regarded as constant quantities. p= F[l+iwcr(l+~x)F/3~(1+~)]~’ 
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i [ 

ioa(l+Px) F -’ 
fi= l$(&--1)P (F-l) 1+ 3p(1+X) 1 

+m(3/F-2)[G(2b+1)+2-28])-’ (16) 
1 

The second equation serves to find /I as a function 
of other parameters whereas the first one determines 
p. Both fl and p depend not only on the ratio CI of the 
heat conductivities of the materials of the phases, the 
volume concentration p of the dispersed phase and the 

structural parameter x, but also on the dimensionless 
frequency w, and just this reveals the physical origin 

of the dispersion effects influencing non-stationary 
heat transport. For real unsteady processes, the 
characteristic values of w (measured, in accord with 
equations (3), in units of the dimensional frequency 

ti,/az) are ordinarily small enough compared with 
unity. This gives an opportunity to seek a solution of 
equations (16) in the form of series in degrees of iw. 

Below attention is confined only to the first two terms 
of these series. By means of using 

~=fl’O’_iwfl’l’+..., P=P (0) _ jWP”’ + . 

(17) 

in equations (16), while expanding these equations 
into series in degrees of iw, it can be straightforwardly 
obtained 

/3(O) = 1 +p(cr- l)M,/N,, 

fl”’ = p(cc-l)(1/15+M,N,/N:) 

x [l+p(cc-l)(M,N,-M,N,)/N:]~’ 

P 
(0) = 1 , $‘I = l/15+cc(l+/P’~)[3~‘0’(l+x)]-’ 

(18) 

where the quantities 

M, = (2(~‘“‘)‘+2)(G-1)+~‘“‘(5G+4) 

M, = 4/+“(G- 1)+5G+4 

N, = 2(2/I”‘+ l)G-2+2fl”’ 

+a[(2/+“+ l)G+2-28”‘] 

N, = 2(1+2G)+2a(G- 1) 

N, = (cr/5)[(2P’“‘+l)G+2-2fi’0’] 

are introduced. 

(19) 

The coefficient p (‘I determines, in fact, the dimen- 
sionless effective heat conductivity of the granular 
medium in stationary circumstances which have been 
studied extensively in ref. [lo]. It can be used to find 
a value of the empirical dimensionless thickness x of 
the concentric layer around the test sphere by com- 
paring the formula in set (18) with either more strict 

a 
5x4 

1 

FIG. I. Effective dimensionless heat conductivity as a func- 
tion of a at p = 0.6 and different x (figures on the curves) ; 

points, experiments of ref. [12]. 

theoretical relations or experimental data. In Fig. 1 

curves characterizing the dependence of fl(‘) on tl at 
different x are presented along with experimental 
results of ref. [12]. Unfortunately, the comparison 

does not appear to be sufficiently conclusive, sup- 

posedly for the effect of contact conductivity between 
touching particles having been not excluded in the 
experiments with polydisperse systems performed in 
ref. [12]. However, a rough evaluation gives 
0.1 < x d 0.4. To get a more convincing result appli- 
cable to randomly packed monodisperse mixtures 

with spherical particles, one is able to turn to exper- 
iments on the electric conductivity of emulsions in ref. 

[ 131 used quite successfully while checking the theory 
advanced in ref. [lo]. Theoretical curves b(‘)(p) are 
drawn in Fig. 2 for different x and two values at LY. It 
can be easily seen that the experimental points fall 
close to the curves corresponding to x x 0.3 at 

both values of CI. Characteristic dependences of /Y”) 
upon p at CI = 100 and x = 0.1 and various x are also 
shown in Fig. 3. 

Through carrying out the inverse Fourier transform 
and returning to the original dimensional independent 

variables with the help of set (3), the first equations 
in sets (7) and (17) yield a relation characterizing the 
relaxation of the heat flux in unsteady processes 

q, = -,&VT = -p’L,Vt, 

r, = (p”‘/~‘“))(a2/K,). (20) 

Here qs is a quasi-stationary heat flux corresponding 
to a given instantaneous value of the mean tem- 
perature gradient and T, is the specific relaxation 
time. 

The second and the third equations in set (8) yield 
with the former accuracy (the equality ,L&‘) = 1 is 
allowed for) 

T, = [l--iW(l-p)~‘~“‘]zo. (21) 

It reads, in the original variables 

2, = (1 - r,a/at)T,, T* = /&“(l-p)-‘(a*/K,) 

(22) 
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FIG. 4. Dimensionless relaxation time t, = K, T,/a' as a func- 
tion of p at different x, a = 100 (a) and 0.1 (b). 

FIG. 2. Theoretical dependence of/P”) on p at different x and 
CI = 15.7 (a) and 100 (b) ; points, experiments of ref. [13]. T, being another relaxation time. This equation 

describes the relaxation of the mean temperature of 
the dispersed phase to a given value of that of the 
continuous one. 

A relaxation relation for the mean interphase heat 

exchange can be obtained easily as well. It follows 
from equations (8) and (17) after a simple manipu- 
lation and allowing for equation (7) that 

z*-2, = iwp(“(I -y)- ‘7 (23) 

which gives in the original variables 

h = -0 = -k,(l-T,d/df)(T,-r,) 

k s = -p(l-p)i //Pa’, I T,, = p”‘uz/ti,. 

(24) 

0.8 

G 
QL 

0.5 

FIG. 3. Dependence of/I”’ on p at different x (figures on the 
curves), u = 100 (a) and 0.1 (b). 

Equations (20), (22) and (24) are rigorous within 
the limits of their accuracy and, thus, make unnecess- 
ary supplementary assumptions concerning the relax- 
ation of relevant quantities in unsteady heat transfer 
processes. It is worth noting that they are somewhat 
different from those usually postulated on an empiri- 
cal basis. 

The dependence of dimensionless relaxation times 
K, T/a” on p is illustrated in Figs. 4 and 5 at various 
x for a = 100 and a = 0.1. These figures supplement 
the information presented in Fig. 3. 
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FIG. 5. Dependence of t, = K, Tr/a2 and th = K~ T,,/a’ on p 
(solid and dashed curves, respectively) at different x, a: = 100 

(a) and 0.1 (b). 

4. CONTINUAL DESCRIPTION OF NON- 

STATIONARY HEAT TRANSFER 

Let us collect together all the conclusions bearing 

upon the averaged field equations governing unsteady 

heat transport processes. From equations (1) (20) 
and (24) a complete set of heat conservation equations 
and of constitutive relaxation relations is obtained 

c,&(a/at+v”v)t, = -Vq+h 

c,p(a/at+V,v)T = -h, 7 = ET”Sp7, 

q = -A,( 1 - T$/&)Vr, 

h = -k,(l-T,a/&)(t,-z,) (25) 

the relaxation times T, and T,,, the effective stationary 
heat conductivity 1, = ~(‘)& and the quasi-stationary 
heat exchange coefficient k, being defined by equations 
(18), (20) and (24) and in Figs. 3-5. Only set (25) 
must be used while dealing with non-stationary heat 
transfer subject to certain conditions imposed above. 

It is also expedient to consider simplified methods 
of the description of heat transport under unsteady 
conditions. By using an operational expansion, one is 

able to rewrite the relaxation relation (20) for the 
mean heat flux with the same accuracy as 

q, = -1,Vt = (1 - T&at)- ‘q = (1 + T,$/&)q. 

(26) 

Such a relation has been suggested before as a hypoth- 
esis [14]. If both phases of a granular medium are at 
rest (vO=v, = 0) and one does not distinguish 

between the temperatures T,,, 7, and r, then summing 

up the conservation equations in set (25) yields 

caT/at = -vq, c = EC~SPC,. (27) 

Hence, and from equation (26) one gets a hyperbolic 
equation 

c(azjat+ 7-,a3latz) = 1,A7. (28) 

This equation is obviously erroneous and cannot 

be used to characterize unsteady transfer processes 
since it is incorrect to neglect a similar term of the 

same order of magnitude in the expression for h while 
taking into account the relaxation term in the 

expression for q. 
A proper approximate equation for the mean tem- 

perature of a motionless granular medium can be 

derived in the following manner. Firstly, through 
expanding in degrees of iw and taking into account 

equation (17) one gets from set (8) 

/l(‘)Az = i~(~,/~~)[l+p(c,/c~-1)-z’wH] 

H = ppc”‘(c,/c,- 1) 

-(PiPW +~(c,ic,- ~1. (29) 

Applying the inverse Fourier transform and passing 
to variables in equations (3) results in an equation 

c(&/at- Tea2z/&2) = &AT, T, = H(C,/C)(U2/K,) 

(30) 

the thermal capacity c per unit volume of the medium 

on the whole being expressed in equations (27). The 
effective relaxation time T, is illustrated as a function 
or p, x and LX in Fig. 6. 

6x103 

u” 

4x103 

160 

&Y 

60 

0 0.2 0.4 0.6 

P 

FIG. 6. Effective dimensionless relaxation time t, = K, T,/a’ 
as a function of p at different x. CI = 100 (a) and 0.1 (b). 
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FIG. 7. Dependence of parameter A on a at p = 0.6 and 

different x (figures on the curves). 

As r, is always positive, equation (30), which is to 
be substituted for equations (28), belongs to the ellip- 

tic type. For the first time a single ‘equivalent’ equa- 
tion to describe heat extraction from geothermal res- 
ervoirs was obtained in ref. [15] for a simple case 

when heat conduction is completely neglected and the 
convective heat transport with an infiltrating fluid is 
only significant. Later on, such equations have been 
derived and studied in refs. [ 16, 171. 

It is instructive to deduce from the above con- 
sideration a set of equations for the phase tempera- 
tures, r. and t,, similar to equations (I). With this 

purpose in view, equations (8) will be somewhat 
rearranged with the help of equations (17) and, as 
before, only the terms of the zeroth and the first-order 
in io will be retained. This yields 

At,, = (~.,IIc~)[~wE/~(“)+(c,~c~)(PEIB((’))(T,,--~,)] 

s(~,-z,) = iwp(“z,. (31) 

Hence, after using the inverse Fourier transform and 
returning to the dimensional variables, one obtains 
for motionless granular media 

A’ = 12ps[1/5c(+(l +/Y”‘x)/[Y”‘(l +x)1-‘. (32) 

These equations conform with those in set (I) at 
v0 = v, = 0, if i* involved in the expressions for q and 

for c is understood as i, and i,, respectively, and 
A’ is defined in accordance with the formula in set 

(32). The dependence of A upon x at zx = 100 and 
x = 0.1 for granular beds (p = 0.6) is presented in 
Fig. 7. It can be seen that the value A = 2 supposed 
in ref. [3] represents a certain approximation to actual 
values of A. 

Equations (S-(32) are derived with reference to 
media at rest. However, they can be reasonably 
assigned to a granular medium in motion being con- 
sidered in the coordinate system connected with its 
dispersed phase. Then an additional convective term 
~.,+(v~-v~)Vr must be included in the left-hand side 
of equations (30) or a term c,e(v,,--v,)Vr,, in the first 

equation in set (32). The transformation to the lab- 
oratory coordinate system can be performed easily 
and, for instance. reduces tbc equations in set (32) to 
the form of those in set (1). 

Let us conclude this section with an indi~ati[~I~ that 
ap~roximale c~lualitie~ 

p Z 1 , p % 0 (33) 

follow from equations (16) within a region of small 

time scales (u >> 1). Although the applicability of the 
scheme developed above to such a region is qucs- 

tionable, to say the kdSt. equation (33) outlines the 
essential features of a high-frequency transfer process 
in the right way. Namely, the particles have not 
enough time to absorb a considerable amount of heat 

and do not affect appreciably heat conduction which 
is run mainly through the continuous phase. Note 
that set (32) happens to lead to the right asymptotic 

behaviour at small times if one presumes additionally 

that i,, = j.,,. 
It must be stressed once more that a prerequisite 

for continual methods to be applicable for describing 
non-stationary heat transfer in disperse and hetero- 
geneous media consists in a presumption that a 
characteristic linear scale of the mean temperature 
field is much larger than a scale of the inner structure 
of the medium, L x a. This leads also. as shown 

above, to a conclusion that s in equations (8) as well 
as the left-hand sides of equations are required to be 

small as compared with unity. The latter c~~ndition 
does not actually hold at the initial stages of many 
processes, such as heating of a granular bed through 
a flat boundary, and one has to be aware of the fact 
while dealing with these stages. Nevertheless, one suc- 
ceeds sometimes in attaining fair conformity with 

experiments even during such a stage [3, 18, 191, which 
seems to be due to occasional reasons and, in particu- 
lar. to the fact that the approximate equations in set 
(32) yield correct asymptotics at small times. 

5. CONCLUSIONS 

The main achievement of this paper consists in a 
strict derivation of a closed set of both heat con- 
servation and constitutive equations governing non- 
stationary heat transport within the field of the con- 
tinual mechanics and physics. The procedure 

developed gives an opportunity to point out different 
approximate methods of rough description oi 

unsteady transfer processes which could be of use in 
various situations. This enables one also to estimate 

critically the adequacy of phenomenological 
approaches proposed and used previously and to give 
an account of the conditions under which these might 
be successful when applied to particular problems. 
The most important inference concerns the fact that, 
whereas the conservation equations are principally of 
the same basic form as those postulated within such 
approaches, the constitutive equations happen to bc 
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quite different from their versions suggested to 
describe relaxation processes and various dispersion 
effects on an empirical basis. This is of particular 
concern because, as it is evidenced by the above, 
the form of relaxation relations is able to affect the 
very type of differential equations called to circum- 
scribe the essential features of unsteady transfer 
processes. 

While dealing with the method developed and, in 
particular, when trying to extend it to other problems, 
one should distinguish between the rigorism of the 
general mathematical technique employed as a foun- 
dation and the approximate nature of supplementary 
assumptions being used within the frames of this tech- 
nique to simplify the necessary calculations. Two lead- 
ing assumptions of this kind are to be especially 
stressed. The first one pertains to the character of 
relaxation processes progressing in a real granular 
medium. The thermal inertia of particles has been 
actually presumed to exceed considerably that of the 
ambient matrix, and this imposes evident restrictions 
on the type of media the above analysis is to be applied 
to. A generalization to a broader range of granular 
systems does not meet with principal obstacles and 
amounts to taking into account non-stationary terms 
of heat conduction equations not only inside the test 
sphere but also in its exterior. Such a generalization 
may constitute one of the possible directions of future 
work. 

The second assumption has relevance to the short- 
range order in the packing of particles. Its point con- 
sists in the introduction of a layer filled with pore 
material of continuous phase so that solving the test 
particle problem becomes much simpler. If randomly 
packed granular media are kept in mind, the assump- 
tion can be avoided by means of using an appropriate 
representation for the binary correlation function 
when formulating the problem in compliance with ref. 
[lo]. This is not so simple, however, for polydisperse 
systems of particles of an irregular shape and for 
heterogeneous media of another inner structure. In 
such cases a satisfactory approximation for the vol- 
ume concentration of the dispersed phase near any 
chosen particle is absent and the concept of a layer of 
pure ambient medium separating their surfaces from 
a system with uniform properties is, in fact, the only 
conceivable and quite natural because of not only its 
simplicity but also for lack of positive knowledge 
about the features of the short-range order in the 
packing of the particles. This is the reason why curves 
corresponding to different 71 are drawn along with 
those for x = 0.3 in the above figures. One expects 

large values of 1~ to be representative of loosely-packed 
beds of irregular particles whereas low ones play a role 
when treating heterogeneous systems such as dense- 
packed polydisperse beds, fractured porous bodies, 
etc. 

As a final remark, we claim all the equations derived 
to be applicable to non-stationary transport of some 
other scalar quantities. This statement seems trivial 

when diffusive transport of an admixture in a granular 
system is in question. Then one has to put cg and c, 
to be identically equal to zero and to substitute Lo 
and i, by diffusivities of the admixture in materials 
of the phases of the medium. The statement is not 
so obvious, however, when filtration processes in 
macroscopically heterogeneous porous media are in- 
volved. As a matter of fact, in this case the role of tem- 
perature is played by the fluid pressure in fractures 
and within porous lumps divided by them and 
pressure conductivity coefficients replace those of 
heat conductivity. Dispersion and relaxation 
phenomena are especially significant in this context 
since time scales of the relaxation be up to several 
hours or days. 
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TRANSFERT THERMIQUE INSTATIONNAIRE ET EFFET DE LA DISPERSION DANS 
LES MILIEUX POREUX 

RbsumL-On considire le transfert thermiquc instationnaire dans un mttlange particulaire macro- 
scopiquement isotrope et homogkne, a partir d’une approche g&&ale bas6e sur la moyenne des iquations 
de conduction thermique locale, valables dans les mklanges de phases, pour un ensemble con~gurationjicl 
de particules, et bast aussi sur la thkorie du champ self-cons&ant. Un systime d’Cquations pour les 
temptratures moyennes des phases est obtenu en nigligeant lc transport direct de chaleur 6 travers les 
contacts entre particules contiguts. A la fois le flux thermique moyen et I’Gchange entrc phases sent 
essentiellement d&pendants de la frkquence et la conductivit6 thermique eff‘ective s’tcarte considbrablement 
de sa valeur stationnaire. Ceci est caractCristiyue des mkcanismes de relaxation qui influencent lc transfert 
thermique instationnaire et gt’n&cnt des effets de dispersion. Dans I’instationnaritC faible, le systi-me peut 
@tre r&d& i une seule Cquation “equivalente” ou $ un systeme de deux bquations simplifikes dont la fiabilite 

cst discutitr en detail sur l’exemple du chat&age d’un lit gram&ire tixe i travcrs une front&e plane. 

INSTATIONARE WARMEOBERTRAGUNG UND DISPERSION IN SCHUTTUNGEN 

Zusammenfassuug---Die instationire WLrmeiibertragung in einem Gem&h aus makroskopisch isotropen 
und homogenen Partikeln wird mit Hilfe einer allgemeinen Niherungsmethode untersucht, die auf Gleich- 
ungen fiir die mittlere Grtliche Wlrmeiibertragung in Gemischphasen aus einer Gruppe von Partikcln 
und auf der Vorstelfung der selbstkonsistenten Feldtheorie basiert. Fiir die mittleren Temperaturen der 
Phasen ergibt sich ein geschlossener Satz von Gleichungen unter Vernachl~ssigung der Wgrme, die durch 
den Kontakt beilachbarter Partikefn direkt ~bertragen wird. Sowohl die mittlere ~~estromdich~e als 
such der Austausch zwischen den Phasen erweist sich als stark frequenzbh~ng~g, weshalb die effektive 
W&-meleitf2higkeit betrlchtlich vom station&en Wert abweicht. Dies ist verantwortlich fi.ir Relaxa- 
tionsprozesse, die ihrerseits EinfluB auf die instationgre WTrmeiibertragung ausiiben und entsprechende 
Dispersionseffekte vetursachen. Bei schwach instationiren Bedingungen lassen sich die Gleichungen 
entweder zu einer einzelnen Cquivalenten Gleichung von elliptischem Typ zusammenfassen odcr zu 
einem System aus zwei vereinfachten Gleichungen. Deren Giiltigkeit wurde bereits friiher anhand cincs 
Beispiels ausfiihrlich diskutiert, bei dem eine ruhende Schiittung durch eine ebene Begrenzung beheizt wird. 

HECTA~~OHAPHbI~ ~H~OnEPEHOC II 3Q@EKTbI AMCITEPCHW B 

TPAHYJRiPOBAHHbIX CPE&%X 

AwoTamm-C noMombw o6urero nomtana, ocHoBamor0 Ha ocpenweauu: ypaBHewiB AoKanbuol Ten- 

,IO,‘IpOBOAHOCTu, OrIliCbIBBH)LI@iX @3bI CMeCUl B aHcaM6ne YaCTaII pa3JlWiHofi reOMeTpFi8, II Ha HAellX 

cah4ocornacoBanHo~ Teopna norm, aHann3spyewa IiecraueoHapnbrl Tennonepenoc 3 MaKpocKonuvecKn 

H30TpOnHOjl A OAHOpOAHOii CMeCH MBKpOQWTnU. BbIBeAeHa CHCTeMB 3aMKHyTbIX ypaBHeIiHif AJISI 

CpeAHHX TeMnepaTyp @a3 B npeHe6~%eHi%H rQ3KMbIM TeMOnepeHOCOM ‘iepe3 30HM KOHTaKTa SaCTAn. 

~oKa3aHo,4~0 KaK cpeAmiii ~enA0B0fi ~OTOK, TaK ii Me@a3HbG TenAoo6MeH cynnzr~e~~o 3aBzffT OT 

YacroTbr, ~TO Bbr3bmaeT 3Hay~nbHoe ow8oHemie ~KTUBH~~ Ten~onpo~AH~~ OT ~aUnoHap- 
HOBO 3IiaYeiiHS. TaKoe noBeAe%nie XapaKTepHO &Jr% npOUeccOB ~ABK~~~, Bn~Rzouw~ Ha HeCTar?J%oHap- 

HbIii TennoIIepeHoc, H ~~HBoAHT K COOTBe’rCTi?yMUIRM AHCnepCAOHIibIM 3+KTaM. B yCJIOBliRX cnadoii 

HeCTaUHOHBpHOCTH Clicrehfa ypaBHeHH% MOXCeT 6bITb ne60 CBeAeHB X OAIfOMy “3KBBBBJIeHTHOMy” 

3~1~nin~~~e~K0hiy ypaBueHm0, nn60 K cnCTeMe AB~X ynporueHHblx ypaeaemii, HaAewIocTb KOTOP~IX 

pacchtoTpeHa neTanbii0 Ha npnhfepe Harpesa HenoABmKHoro rpaHynHpoBaHHor0 cnox yepe.3 MOCK~KI 

rpaauuy. 


